Regional climate consequences of large-scale cool roof and photovoltaic array deployment

Dev Millstein Surabi Menon

Regional climate consequences of large-scale cool roof and photovoltaic array deployment

Dev Millstein

Surabi Menon

Acknowledgements:

- Paul Alivisatos (PV motivation)
- Art Rosenfeld (cool roof discussions)
- LBNL's Lawrencium and the DOE's National Energy Research Scientific Computing Center

Outline

- Cool roofs: Observations vs. Modeling
 - Large-scale deployment
- What's new here

 Modeling system
 - Feedbacks to atmosphere
- Findings
 - Cool roof and cool pavements
 - Desert photovoltaic power plants

The Provence of Almeria

Annual surface temperature by region

Annual surface temperature by region

Observations vs. Models

- ~1 ° C reduction in temperature observed
- Similar temp. reductions from models
 - ✓ 1-2 ° C reductions at 6 CA urban areas (Taha 2008)
 - ✓ Roughly similar modeling results found in studies at Athens (Synnefa et al 2008), and New York (Lynn et al 2009)
- Can we assume the same result everywhere?
 - Even over a large domain, and long time period?

 Continuously updated boundary conditions (Winds, pressure, water, temperature)

doi:10.1088/1748-9326/6/3/034001

Regional climate consequences of large-scale cool roof and photovoltaic array deployment

An E&E Publishing Service

GREEN BUILDING: 'Cool roofs' foun Dallas (Wednesday, July 27, 2011)

Colin Sullivan, E&E reporter

Wondering if a "cool roof" would save you mo question depends largely on where you live.

Scientists at the Lawrence Berkeley National United States of white or light-colored rooftop to which energy use is trimmed depends large

environmentalresearchweb

SCIENCE . POLICY . ENGAGEMENT

Home Opinion News Journals Jobs Resources Buyer's guide Events Contact us

LATEST NEWS ARTICLES

- Pînpointing geothermal energy's water needs
- Maldives crowdsources 2020 carbon-neutral plan
- Map identifies potential areas for boosting biofuel crop yield
- Carbon capture progress has lost momentum, says energy agency
- ▶ Lake water checks come under

NEWS

Jul 14, 2011

Cool roofs affect climate

Changing the surface reflectivity of urban areas could have a significant impact on regional climate, according to researchers at Lawrence Berkeley National Laboratory (LBNL) in the US.

Dev Millstein and Surabi Menon investigated, on a continental scale, the

How well does the model do?

- Temperature (can capture ~55% of the variance)
- Precipitation

- Observations based on radar and gauge measurements (NWS)
- Comparison is accumulated rainfall over the year 2005

Surface reflectivity

Surface reflectivity

Temperature change from cool cities

- Averaged over 12-years (1 pm PST)
- Hatched areas: significantly different from no change (95% C.I.)

Temperature change from cool cities

			Summer (JJA)	Winter (DJF)
Location	% Urban ^a	∆ Albedo	∆ Temperature	∆ Temperature
Columbus, OH	20%	0.02	-0.02*	-0.05
San Antonio, TX	27%	0.03	-0.08*	-0.10
San Diego, CA	28%	0.03	-0.13	-0.11
Jacksonville, FL	28%	0.03	+0.01*	-0.06
San Jose, CA	29%	0.03	-0.23	-0.10
Dallas, TX	42%	0.05	-0.09*	-0.08*
Phoenix, AZ	47%	0.05	-0.16	-0.19
Miami, FL	54%	0.06	-0.11	-0.12
Chicago, IL	61%	0.07	-0.27	-0.12
Atlanta, GA	70%	0.08	-0.12	-0.21
Philadelphia, PA	75%	0.09	-0.22	-0.22
Houston, TX	86%	0.10	-0.19	-0.24
New York, NY	91%	0.10	-0.30	-0.24
Detroit, MI	95%	0.11	-0.39	-0.12
Los Angeles, CA	96%	0.11	-0.53	-0.41

^{*} Indicates the temperature change is not significantly different from 0.

^a Percentage of land area classified as urban.

Temperature change from cool cities

			C (TTA)	W' (DIE)
			Summer (JJA)	Winter (DJF)
Location	% Urban ^a	∆ Albedo	∆ Temperature	∆ Temperature
Columbus, OH	20%	0.02	-0.02*	-0.05
San Antonio, TX	27%	0.03	-0.08*	-0.10
San Diego, CA	28%	0.03	-0.13	-0.11
Jacksonville, FL	28%	0.03	+0.01*	-0.06
San Jose, CA	29%	0.03	-0.23	-0.10
Dallas, TX	42%	0.05	-0.09*	-0.08*
Phoenix, AZ	47%	0.05	-0.16	-0.19
Miami, FL	54%	0.06	-0.11	-0.12
Chicago, IL	61%	0.07	-0.27	-0.12
Atlanta, GA	70%	0.08	-0.12	-0.21
Philadelphia, PA	75%	0.09	-0.22	-0.22
Houston, TX	86%	0.10	-0.19	-0.24
New York, NY	91%	0.10	-0.30	-0.24
Detroit, MI	95%	0.11	-0.39	-0.12
Los Angeles, CA	96%	0.11	-0.53	-0.41

^{*} Indicates the temperature change is not significantly different from 0.

^a Percentage of land area classified as urban.

California summer average temperature reductions:

- 0.2 0.3 ° C in most urban regions
- up to 0.6° C in Los Angeles
- No feedback issues

Equivalent carbon reductions

1 m² of cool surface = ??? avoided tons of CO₂

Assumptions:

- 0.91 kW t⁻¹ atmospheric CO₂ radiative change
 - Menon et al 2010, Akabari et al 2009
- 55% atmospheric retention of emitted CO₂
 - IPCC 2007

Equivalent carbon reductions

Cool roofs and pavements	Annual values	
Increase to outgoing radiation	0.16±0.03 W m ⁻²	
CO ₂ per roof area	$175 \pm 33 \text{ kg CO}_2 \text{ m}^{-2}$	
CO ₂ per pavement area	$125 \pm 33 \text{ kg CO}_2 \text{ m}^{-2}$	
National Total offset	3.3±0.5 Gt CO ₂	

Cool roofs vs. photovoltaic panels

Nevada

Ohio

Surface reflectivity

Surface reflectivity

Temperature change from PV

Temperature change from PV

Summary

Cool Roofs

- Increased urban albedo leads to significant cooling
- Coupled land-atmosphere modeling demonstrates regional differences due to albedo changes
- No urban areas see average warming
 - -A few cities do not see average cooling
- CO₂ offset, 3.3 Gt (175 kg / m² roof)

Photovoltaic Power

- Temperature and weather effects − 10² km
- Continental scale, year-to-year variability high